Tag Archives: tool

Making a moulding plane: Step 4 – Boring (the Wedge Mortise)

This is the fourth part in a series on making a moulding plane.  If you haven’t been following along, check out the previous posts using the following links:  Making a moulding plan: Step 1 – The blankMaking a moulding plane: Step 2 – Layout, and Making a moulding plane: Step 3 – Making the grip and escapement.

In this post, I’ll show you how the wedge mortise is bored and how the mortise and escapement are finished.  At the end of the last post, we had sawed out the escapement and removed the waste material with a chisel.  Now it’s time to complete the wedge mortise and escapement.  We’ll start by securing the plane body upright and getting an 1/8″ drill bit chucked up.  We will need to bore two holes, one about 1/8″ from the front of the mortise and the other about 1/8″ from the back of the mortise.  Choose which one you want to bore first and secure the plane body in a vise so that the when you bore straight down, the hole will be leaning slightly toward the inside of the escapement.  In other words, if you are boring the hole closest to the front, position the blank so that the front of the escapement (the breast) is just off of vertical and leaning back toward the heel of the plane blank.  If your boring the hole on the bed side of the mortise, you want the bed side of the escapement nearly vertical and leaning slightly toward the toe of the blank.  If this doesn’t make sense, leave me a comment and I’ll post something graphical to clarify.  You will also want to lean your boring tool slightly so that the hole runs toward the escapement side of the plane instead of straight up and down.  More on that later. . .

I used a gimlet bit in my brace, but you can use pretty much any set up you have available.

IMG_2958

If you use an electric drill, set it to run as slow as you can.  You want to be able to control the direction and depth of the hole as much as possible. One advantage to using a gimlet bit is that the bit can be steered more easily than a brad-point bit while the hole is getting started.  You might be able to get a similar level of control with an 1/8″ machinist drill bit as well – just make sure to use an awl or punch to make indentations for the start of the hole.

Bore these holes slowly and back the bit out every few turns.  The bits won’t be able to clear chips out of the hole and will tend to get very hot which can ruin the bit.  It’s wise to place the bit on the outside of the plane along the grip so you can use some type of depth indicator or stop on the bit.  You will want the bit to just clear the top of the escapement and then stop.  A piece of blue painter’s tape works well as a depth indicator.  Just tear off a piece and put it around the bit like a little flag.  When the taped off section gets to the top of the mortise, you’re at your depth and can stop drilling.

The two holes will (hopefully) meet somewhere around the top of the escapement.   You want to see the bit pop out at the top of the escapement about 1/16″ into the plane body from the ramp area you left under the shoulder.  I didn’t lean my brace far enough toward the escapement side of the plane when I bored my holes and ended up not being able to even see the tip of the bit.  You can see half of the holes left by my bit in the photo below. This wasn’t ideal, but it doesn’t ruin the plane either.

IMG_2968

Once the holes are bored, use a 1/10″ chisel to start prying out the material between the two holes through the top of the mortise.  This can take a little time, but all you are trying to do at this point is open up the mortise so you can get an edge float into the mortise.

IMG_2963

When the mortise is open enough, start using an edge float to widen the mortise almost to the layout lines (leave a little extra for fine-tuning the mouth).

IMG_2966

It shouldn’t take very much time with the edge float to have the mortise opened up to close to it’s full length.  Next, it’s time to widen the mortise with a side float.  The side float is the tool you’ll use to make sure the side walls of the mortise line up properly with the blind side of the escapement and that the bottom of the mortise at the top of the escapement is exactly the same width as your wedge (3/16″ in the case of a #6 plane).  Use lighter and lighter touches with the float as you get close to your desired size for the opening.  Floats are extremely dynamic tools.  They can take very heavy cuts if the handle is lifted and firm pressure is exerted, or they can make extremely fine controlled cuts if used flat and with a delicate touch.

IMG_2964

At this point, we have opened up the mortise.  In the next post, I’ll show how to bed the iron and fit the wedge.

Until next time. . .

Making a moulding plane: Step 3 – Making the grip and escapement

This is the third installment in a series on making a moulding plane.  If you haven’t read them already, you can find parts one and two at the following links:

As I’ve mentioned in the two previous posts.  I can’t recommend the DVD Making Traditional Side Escapement Planes with Larry Williams highly enough.

In this week’s post, I’ll walk you through cutting the grip and escapement of the plane.

I left off last week with the blank for the plane body completely laid out using a combination of marking gauge, marking knife, and pencil lines.  Now we’re ready to pick up saws, chisels, and floats and start cutting the blank.

We’re going to be cutting the shoulder for the grip and the escapement, both of which need to be crisp clean lines since they are highly visible in the finished plane.  Because of this, I started by cutting the shoulder line of the grip in fairly deeply with a marking knife.  After the line was cut in, I used a chisel to make a lop-sided V-shaped grove at the line.  This was done by placing the edge of the chisel parallel with the shoulder line about 1/8″ away from the line (on the side of the line closest to the top of the plane).  I then cut the V-shaped notch by gently pushing the chisel toward the line and allowing it to cut about 1/16″ deep.  Make sure to push gently, because you want the chisel to stop when you reach the shoulder line.  If a triangular strip of wood doesn’t pop out on it’s own, use a marking knife, razor blade, or chisel to cut straight down along the shoulder line and if necessary, along the notch you made until all the waste has been cut free.  This notch should run the full length of the plane blank and should leave a straight, square edge for the shoulder.

This notch establishes the crisp shoulder line we are looking for and provides a guide for sawing.  The next step is to pick up a fine toothed backsaw and cut the shoulder down to the layout lines the heel and the toe.  Go slowly as you make this cut.  It shouldn’t take long and it’s really easy to over cut, which will weaken the plane.  After every stroke or two with the saw, stop for a second to check the layout lines on the ends of the plane and make adjustments as necessary.  It is common for either the front or the back the be deeper than the other end, so let your progress guide you about where to put pressure as you’re sawing.  When the cut is completed, the teeth of the saw should be right on the outside of your layout line on both the front and back.  If you stop the saw with teeth exposed at the front and back of the plane blank, it’s easy to check this.  This will be an indication that the cut is a uniform depth the whole length of the blank.

IMG_2938

The next step is to remove the thickness of the waste from the grip.  Here you have a couple of choices.  The size of the plane you’re making will play a part in the decision, as will the tools you choose to use.  The choices are 1.) saw down the 1 1/2″ layout lines on the ends of the plane and remove the waste in a single block, and 2.) use a chisel, rabbet plane, and floats to remove the material in the form of chips or shavings. For a # 6 plane, we are only removing 5/32″ of material, so I choose option two.  If this were a larger plane that had more material to remove, I would go with option one.  If you choose to take option one and are using handsaws, you’ll want a fairly course saw and you should stop sawing frequently to clear the chips out of the saw kerf.  You’ll be making a 1 1/2″ deep saw cut along an 11″ span, so the saw won’t be able to clear the sawdust by itself.  Try to leave around 1/32″ to 1/16″ between the saw kerf and the layout line so that you can clean up the grip with a chisel and floats.

 

As I said, I chose to remove the waste with a chisel and floats.  To do this, take a fairly light cut, maybe 1/16″ to see make sure you know which way the grain is running.  If the chisel starts to lever up wood fibers, stop and go the other way.  Once you know which direction you want to cut with the chisel, put the edge of the chisel about half-way between the edge and your layout line and cut out a chip in the direction you just identified.  Once you’ve made one pass down the entire length of the blank, repeat the process.  Place your chisel edge about half-way between the edge and the layout line and remove another layer of waste, this layer will be much thinner, so adjust the force on the chisel so you don’t over do it and ruin the blank.  The last part of cleaning up the grip should be done with very light cuts from a chisel, or preferably, with a float.  The float is the preferred tool because it will leave a finish ready surface and can be used to take of the waste at a more controllable pace.

This is what the grip should look like when your done.

IMG_2941

You can see the quality of the surface left by my crank-neck float in the photo below (there is no polish, liquid, or wax on the surface, only the raw wood surface left by the float – these are really amazingly useful tools).

IMG_2942

Now that the grip is done, its time to saw out the escapement.  At this point, I do things differently than Larry Williams does in the DVD.  Larry uses the layout block I showed in the last post as a saw guide.  The block is clamped to the plane body and the saw blade is held tight against it to make sure the angle is correct.  This is done for both the bed and the breast (the back and front) of the escapement.  I cut the escapement in the same way I cut the shoulder of the grip.  I knife the lines in deeply using the layout block and then use a chisel to remove V-shaped notches on the inside of the escapement.  I also cut these notches in the mouth of the plane down to layout line for the blind-side edge of the mouth.IMG_2948

Now again, it’s time to pick up a fine-toothed handsaw (a crosscut saw in this case, since we are cutting across the grain).  These two saw cuts need to be as precise as you can make them.  The goal is to stop sawing right at the layout line for the blind side of the mouth without crossing the line and at the same time, stop cutting on the other side just as you finish cutting through the shoulder of the grip so you don’t cut into the face of the grip.  If you have to mess up this cut, cut a little heavier on the toe of your saw so that you cut into the grip slightly.  A little bit of a cut hear won’t be to serious because we are going to be forming a ramp from the grip to the escapement later and will get rid of any saw marks that aren’t too deep (if you look closely at the third photo below, you’ll see that I cut into the grip for one stroke myself).  If you cut past the blind side of the mouth, the plane may not work properly.  Just take this slow and check your progress after every stroke or two with the saw.  You’ll be fine.

With the escapement sawn, it’s time to remove the waste for the mouth.  this process starts by using a chisel (3/8″ or 1/2″) to cut in a line 3/8″ down from the shoulder of the grip and parallel to the shoulder.  This will be the top of the escapement for the moment.

IMG_2955

Now place the tip of a 1/10″ chisel about half-way between the escapement side of the plane and the blind-side layout line for the mouth and pop out a chip by pushing the chisel into the escapement and slightly upward.  Work your way down until you have about 1/64″ of material left to be removed from the mouth.  We’ll take care of this later with floats.  Use the chisel to make as smooth a surface on the blind side of the escapement as you can.  At the top of the escapement, you want the escapement to be the thickness of your wedge.  For a # 6 plane, the wedge is 3/16″ thick, so try to keep the depth of the escapement to 3/16″ or just slightly less.  This depth will be fine-tuned as we fit the wedge.  The top of the escapement will ultimately be what pushes the wedge tight against the blind side of the escapement so that shavings don’t catch.  Unfortunately, this was not something addressed in Larry Williams DVD, but rather something I learned from experience when I made my first plane.

IMG_2954

That’s it for cutting the grip and the escapement.  In the next post, I’ll explain the process of boring out the wedge mortise, bedding the iron, and fitting the wedge.

Until next time. . .

Making a moulding plan: Step 1 – The blank

I’ve started work on making my second molding plane – a # 6 hollow to match the # 6 round plane I’ve been working on for the past couple of months.  As promised, I’ve been taking more photos of the process and want to give a step-by-step overview of the process in case any of my readers want to follow along.

First things first – I’m far from an expert plane maker.  As I mentioned above, this is the second plane I’ve made, but I’ve been happy with the results from my first attempt.  I picked up everything I know about making these planes from Larry Williams’ DVD Making Traditional Side Escapement Planes.  If you are interested in making some of these tools, I cannot recommend the DVD highly enough.  With that out of the way, let’s get started. . .

The first step in making a plane is to select the piece of wood that will be used to make the plane body.  First, what species of wood should you use?  The traditional wood was beech, either European or American.  Other woods that I have heard are good are maple, yellow birch, apple, pear, and cherry.  Basically, you want to use a wood that doesn’t vary much in the density and size of the wood fibers between the early and late growth part of its annual growth rings.  Woods that are consistent between the early and late growth are described as being diffuse porous (as contrasted with woods like oak which have notable differences, which are described as ring porous).  Using diffuse porous woods will help the plane to wear better because the grain is more consistent.  I was fortunate to find several 2″ x 4″ of beech that work great for making these planes, so that’s what I’m using.

Once you’ve chosen your wood species, there is one other thing that you should look for in the blank.  That is, it should be quartersawn.   This simply means that the growth rings should run from one face to the the other across the thickness of the blank.  You can see what I mean in the picture below the paragraph after next.

Once you have your stock selected, you need to determine which side and edge will be your reference surfaces.  Using reference surfaces is critical to getting accurate layout, particularly when you are milling lumber by hand.  Basically, you will choose two adjacent surfaces to be your reference surfaces – one face and one edge.  The reference face should be milled up as flat and free of twist as you can make it.  Then, the reference edge should be milled so that it is at a right angle to the reference face and that it is as straight as possible.  Once these two surfaces are prepared, the width and thickness of the blank can be marked based on these surfaces and the other faces milled up to size.  All the layout is then based on the reference surfaces because you can’t assume that the blank is perfectly consistent in thickness or width.  I’ll try to remember to write a post about the process sometime in the near future.

So now that you know what reference surfaces are, how should you choose which surfaces to use as references?  For furniture, it typically doesn’t really matter – you would choose the face that is most visible or that logically has to mate with another piece.  For plane making, however, the choice is largely driven by the blank.  First off, when making moulding planes, you typically want the sole of the plane to be the edge of the blank that was closest to the outside of the tree – the grip edge will be closest to the inside core of the tree.  You want the grip edge to be your reference edge.  Second, based on Larry Williams’ advice in Making Traditional Side Escapement Planes, it is easier to make the plane if the grain runs downhill from the front of the plane (the toe) to the back of the plane (the heel).  See the graphic below.

Moulding Plane Blank

If we look at the plane blank in the image above, the escapement and grip would be cut out of the side facing us.  This is the escapement side.  The other side is called the “blind side” because you can’t see the escapement or the iron from that side.  Since most of the cutting is done on the escapement side, it is more difficult to use as a reference face, so we will use the blind side as the reference.  So, the blind side and grip edge will be our reference surfaces.

Once all this has been worked out, plane the surface that will be the blind side face as flat and free of twist as possible.  Mark that face at the grip edge so you remember which face is your reference.  Then plane the grip edge so that it is square to the blind side and as straight as possible.  With this done, mark the desired thickness of the plane blank all the way around the blank (for a # 6 plane, the target you’re shooting for is 21/32″) and plane down the escapement side to that thickness.  It should be said here that I’m giving instructions for doing this with muscle powered hand tools.  The milling could just as easily be done with a power jointer, planer, tablesaw, and/or bandsaw.

With the blank at target thickness, mark the width of the blank which is 3 1/2″ off of the grip edge (remember, it’s our reference edge).  The finished plane will actually only be 3 3/8″ when we’re all done, but you have an extra 1/8″ on the grip so that the plane can get beat up a little while we’re making it.  Mill the blank to 3 1/2″ in width.  I used my frame saw after starting the kerf with a back-saw.  It could also be done with bandsaw if you’re cutting the blank from a thicker piece.

Once the blank is 3 1/2″ wide by 21/32″ thick, layout the length of the blank at 11″ using only the reference face and reference edges for your square so that the layout lines meet.  Cut the blank to an 11″ length (later, we’ll be cutting the plane down to it’s final length of 10″, but for now we have the extra length to take a little abuse while we’re working.

Now you have a 11″ x 3 1/2″ x 21/32″ blank.  The next phase of making the plane is laying everything out.  More on that in the next blog post.

Until next time. . .

All coming together

I was able to take about an hour away from working this weekend to make a little progress on the moulding plane.  It’s amazing how just a few little things can make a big difference in the look and feel of a tool.

First, I planed off about 1/8″ of material that was left at the top of the grip of the plane to bring it down to its final height of 3 3/8″.  I also sawed off the extra 1/2″ on each end of the plane blank.  I cut the wedge to it’s final length and cut a bevel on it to push chips out of the escapement of the plane.  I then rounded off the back of the grip so it would be more comfortable to hold.

This thing is starting to look like a real moulding plane.  I decided that I would try sharpening up the iron, even though I hadn’t heat treated it and try out the plane.  A couple of photos of the results are below.

The iron was a little soft and so there is a little bit of a flat and a knick in the curve left by the plane, but those should be taken care of when I get the iron heat treated.  At this point, the only things left to do are the heat treatment and a few cosmetic touches to make the plane look better and feel better in use.

I don’t know when I’ll be able to heat treat the iron.  I really don’t have the equipment to do it right and don’t have the extra cash or time to put together any type of forge doing the work.  I’m still thinking about how I want to approach that.  Next week, I hope to have finished the cosmetic work on the plane and wrap up this series of posts.  In the next series, I intend to show photos of the process of making the hollow plane that is the mate to this one so you can see the steps involved and how easy making a useful tool can be.

Until next time. . .

Finally a little more progress

I only got about a half hour of shop time this week, but I was able to make a little progress on the moulding plane.

The most notable work that I got done was shaping the finial at the top of the wedge as you can see in the photo below.  IMG_2878

This was a simple matter once I got it laid out.  Just a few minutes with a coping saw to rough out the shape, then about 5 minutes of work with a float and a chisel and the finial is all done.

I also formed the wear, which is a slightly wider angled section in the front of the iron to allow shavings to enter the mouth of the plane.  This was done with a float in about 5 minutes.

IMG_2879

The next step, other than heat-treating the iron is to remove about 1/8″ of wood off the top edge of the grip and remove the excess from the front and rear of the plane.  You can see the knifed in lines in the photo below.

IMG_2880

I hope to make some progress on this plane next weekend.  I’ll make sure to post on the progress.  Once this plane is done, I’ll be working on a matching hollow plane.  With that one I plan on getting more photos of process of making a plane and not just the results.

Until next time. . .

More on plane makers floats

I didn’t have much time for woodworking this week.  However, I did take a few minutes to get the wedge for my first moulding plane cut out and to the right thickness for the wedge mortise.

Last week, I mentioned that I would take some photos of the plane makers floats I used and where they are used in the process of making a wooden side-escapement plane such as a moulding plane.

First up is a crank-neck float.  This isn’t a dedicated plane making float, but it is a handy tool.  The toothed portion of the blade is around 3 inches long, and reasonably flat.  This makes it a great tool for leveling and cleaning up the grip of the plane.  I also used it cut the rounded profile of the plane.  I had to use a straight-edge to make sure it had a straight profile along the length of the plane, but it worked out well.

Once the mortise roughed in by boring and the removing the waste with a chisel, the float work in the mortise begins with the side float.  As can be seen from the photo above, the angle of the float is just a little smaller than the angle of the escapement.  This float is used to remove material from the sides of the wedge mortise and to refine the fit of the wedge.  Floats can leave a very clean finished surface, so they are also used to refine the mortise once it is close to being the right size.  Both sides of the mortise get cleaned up with the side float.  At the moment, I’ve only made a push style side float (it cuts on the push stroke only) and I’m considering making a pull style side float as well.  The pull floats are good for removing material at the mouth of the plane because the force required to use the float moves from the narrowest part of the mortise at the mouth toward the larger grip end of the mortise.  This keeps the mouth from being damaged.

Next, the bed (back wall, where the iron rests) and breast (the front wall of the mortise where the wedge is puts pressure to hold the iron in place) of the plane are refined with the edge float.  Again, the angle of this float is slightly less than the wedge mortise angle.  This float is used to make the bed and breast straight so that the wedge and iron will make full connection, which will affect how securely the wedge holds the iron in place.

The final floats that are used in making moulding planes are cheek floats.  I use both push and pull style cheek floats.  These floats are used to hollow out the sides of the mortise slightly.  This helps to make the wedge fit a little better.

That pretty much covers the use of these floats in making a moulding plane.  I plan to order the plane iron blanks for this plane and it’s mating hollow (concave) plane from Lie-Nielsen Toolworks.  Once I get these irons, I’ll write some posts about profiling the iron for this plane and then I’ll make the hollow plane and get some photos of the process so that I can write a post about it.

Until next time. . .

Looking for an angle. . .

I mentioned in my post last week that I have been starting to look for and purchase some special tools that, according to Larry Williams DVD, Making Traditional Side Escapement Planes, will make the process of making moulding planes easier.  One of these tools is a Universal Bevel Protractor.  These are really more of a machinist tool than a tool for woodworking, but they are useful for setting accurate angles for bedding plane irons and fitting wedges.  I started looking for one online and almost immediately had sticker shock.  The first one I found was on Amazon.com and runs around $260 U.S.  Needless to say, this is out of my price range for a one-trick-pony tool like this.  This tool’s trick is that it will let you accurately measure or set an angle down to 1/12 of a degree.  I gave up on getting one and decided that I’d have to find some other way to set the angles I needed for making planes.

IMG_2784

Then, on my way home from a business trip in Cincinnati, I decided to stop into an antique mall that I try to hit anytime I’m in the area.  I wasn’t in the store for 10 minutes and what did I find but a Universal Bevel Protractor.  And the price was only $50 U.S. – SOLD!

In his DVD, Larry Williams gives specific bed angles that are most commonly used for planes and with this tool, I was able to make some saw guides that will let me saw out the escapement of the planes (where the shavings come out) at the right angles.  There are four common bedding angles (called pitches) that are used for planes: standard pitch (45º) for softwoods, york pitch (50º) for both soft and hardwoods, middle pitch (55º) for hardwoods, and half pitch (60º) for figured woods or woods with interlocking grain.  So far, I have made guides for all of the pitches except half pitch.IMG_2775

These are simply wooden blocks with with the desired angles cut on them and a fence glued on  to register them against the plane being made.  Then, the guide can be clamped to the plane and used to guide a saw to cut out the escapement.  The right side of each guide is the bed angle (minus 1/4º to allow for adjustments) and the left side is the breast angle (the breast is the front wall of the escapement and wedge mortise).  These angles result in a 10 1/2º wedge angle for holding in the planes iron.

Hopefully, in the next few weeks, I’ll be able to start working on making a plane or two.  I’ll be sure to get photos and post about the process.

Until next time . . .