Monthly Archives: April 2016

Making a moulding plane: Step 3 – Making the grip and escapement

This is the third installment in a series on making a moulding plane.  If you haven’t read them already, you can find parts one and two at the following links:

As I’ve mentioned in the two previous posts.  I can’t recommend the DVD Making Traditional Side Escapement Planes with Larry Williams highly enough.

In this week’s post, I’ll walk you through cutting the grip and escapement of the plane.

I left off last week with the blank for the plane body completely laid out using a combination of marking gauge, marking knife, and pencil lines.  Now we’re ready to pick up saws, chisels, and floats and start cutting the blank.

We’re going to be cutting the shoulder for the grip and the escapement, both of which need to be crisp clean lines since they are highly visible in the finished plane.  Because of this, I started by cutting the shoulder line of the grip in fairly deeply with a marking knife.  After the line was cut in, I used a chisel to make a lop-sided V-shaped grove at the line.  This was done by placing the edge of the chisel parallel with the shoulder line about 1/8″ away from the line (on the side of the line closest to the top of the plane).  I then cut the V-shaped notch by gently pushing the chisel toward the line and allowing it to cut about 1/16″ deep.  Make sure to push gently, because you want the chisel to stop when you reach the shoulder line.  If a triangular strip of wood doesn’t pop out on it’s own, use a marking knife, razor blade, or chisel to cut straight down along the shoulder line and if necessary, along the notch you made until all the waste has been cut free.  This notch should run the full length of the plane blank and should leave a straight, square edge for the shoulder.

This notch establishes the crisp shoulder line we are looking for and provides a guide for sawing.  The next step is to pick up a fine toothed backsaw and cut the shoulder down to the layout lines the heel and the toe.  Go slowly as you make this cut.  It shouldn’t take long and it’s really easy to over cut, which will weaken the plane.  After every stroke or two with the saw, stop for a second to check the layout lines on the ends of the plane and make adjustments as necessary.  It is common for either the front or the back the be deeper than the other end, so let your progress guide you about where to put pressure as you’re sawing.  When the cut is completed, the teeth of the saw should be right on the outside of your layout line on both the front and back.  If you stop the saw with teeth exposed at the front and back of the plane blank, it’s easy to check this.  This will be an indication that the cut is a uniform depth the whole length of the blank.

IMG_2938

The next step is to remove the thickness of the waste from the grip.  Here you have a couple of choices.  The size of the plane you’re making will play a part in the decision, as will the tools you choose to use.  The choices are 1.) saw down the 1 1/2″ layout lines on the ends of the plane and remove the waste in a single block, and 2.) use a chisel, rabbet plane, and floats to remove the material in the form of chips or shavings. For a # 6 plane, we are only removing 5/32″ of material, so I choose option two.  If this were a larger plane that had more material to remove, I would go with option one.  If you choose to take option one and are using handsaws, you’ll want a fairly course saw and you should stop sawing frequently to clear the chips out of the saw kerf.  You’ll be making a 1 1/2″ deep saw cut along an 11″ span, so the saw won’t be able to clear the sawdust by itself.  Try to leave around 1/32″ to 1/16″ between the saw kerf and the layout line so that you can clean up the grip with a chisel and floats.

 

As I said, I chose to remove the waste with a chisel and floats.  To do this, take a fairly light cut, maybe 1/16″ to see make sure you know which way the grain is running.  If the chisel starts to lever up wood fibers, stop and go the other way.  Once you know which direction you want to cut with the chisel, put the edge of the chisel about half-way between the edge and your layout line and cut out a chip in the direction you just identified.  Once you’ve made one pass down the entire length of the blank, repeat the process.  Place your chisel edge about half-way between the edge and the layout line and remove another layer of waste, this layer will be much thinner, so adjust the force on the chisel so you don’t over do it and ruin the blank.  The last part of cleaning up the grip should be done with very light cuts from a chisel, or preferably, with a float.  The float is the preferred tool because it will leave a finish ready surface and can be used to take of the waste at a more controllable pace.

This is what the grip should look like when your done.

IMG_2941

You can see the quality of the surface left by my crank-neck float in the photo below (there is no polish, liquid, or wax on the surface, only the raw wood surface left by the float – these are really amazingly useful tools).

IMG_2942

Now that the grip is done, its time to saw out the escapement.  At this point, I do things differently than Larry Williams does in the DVD.  Larry uses the layout block I showed in the last post as a saw guide.  The block is clamped to the plane body and the saw blade is held tight against it to make sure the angle is correct.  This is done for both the bed and the breast (the back and front) of the escapement.  I cut the escapement in the same way I cut the shoulder of the grip.  I knife the lines in deeply using the layout block and then use a chisel to remove V-shaped notches on the inside of the escapement.  I also cut these notches in the mouth of the plane down to layout line for the blind-side edge of the mouth.IMG_2948

Now again, it’s time to pick up a fine-toothed handsaw (a crosscut saw in this case, since we are cutting across the grain).  These two saw cuts need to be as precise as you can make them.  The goal is to stop sawing right at the layout line for the blind side of the mouth without crossing the line and at the same time, stop cutting on the other side just as you finish cutting through the shoulder of the grip so you don’t cut into the face of the grip.  If you have to mess up this cut, cut a little heavier on the toe of your saw so that you cut into the grip slightly.  A little bit of a cut hear won’t be to serious because we are going to be forming a ramp from the grip to the escapement later and will get rid of any saw marks that aren’t too deep (if you look closely at the third photo below, you’ll see that I cut into the grip for one stroke myself).  If you cut past the blind side of the mouth, the plane may not work properly.  Just take this slow and check your progress after every stroke or two with the saw.  You’ll be fine.

With the escapement sawn, it’s time to remove the waste for the mouth.  this process starts by using a chisel (3/8″ or 1/2″) to cut in a line 3/8″ down from the shoulder of the grip and parallel to the shoulder.  This will be the top of the escapement for the moment.

IMG_2955

Now place the tip of a 1/10″ chisel about half-way between the escapement side of the plane and the blind-side layout line for the mouth and pop out a chip by pushing the chisel into the escapement and slightly upward.  Work your way down until you have about 1/64″ of material left to be removed from the mouth.  We’ll take care of this later with floats.  Use the chisel to make as smooth a surface on the blind side of the escapement as you can.  At the top of the escapement, you want the escapement to be the thickness of your wedge.  For a # 6 plane, the wedge is 3/16″ thick, so try to keep the depth of the escapement to 3/16″ or just slightly less.  This depth will be fine-tuned as we fit the wedge.  The top of the escapement will ultimately be what pushes the wedge tight against the blind side of the escapement so that shavings don’t catch.  Unfortunately, this was not something addressed in Larry Williams DVD, but rather something I learned from experience when I made my first plane.

IMG_2954

That’s it for cutting the grip and the escapement.  In the next post, I’ll explain the process of boring out the wedge mortise, bedding the iron, and fitting the wedge.

Until next time. . .

Making a moulding plane: Step 2 – Layout

This is the second part of a multi-part series on making a moulding plane.  If you’re just finding this blog post, please see the first part of the series here.

As I mentioned in the first part of the series, I highly recommend the DVD Making Traditional Side Escapement Planes with Larry Williams.  This is a phenomenal educational tool for anyone interested in making moulding planes and some of their history.

We ended the part one of the series with a wooden blank for the molding plane that is 11″ x 3 1/2″ x 21/32″.

Moulding Plane Layout #1

The first step in laying out the plane is to mark a 1/8″ section at the top of the grip.  This will be the top of the finished plane, but for now we have a little  extra material that can get beat up while we make the plane.  While we’re at it, mark a what will be the ends of the finished plane.  The finished plane will be 10″ long, so mark the layout lines about 1/2″ inch from one end and then measure out 10″ and mark the other end line.

Moulding Plane Layout #2

IMG_2912

Next, we need to layout the grip for the plane.  On the finished plane, the grip is 1 1/2″ from the top of the plane and is 1/2″ thick.  To make the grip, we’ll be removing a 5/32″ x 1 1/2″ section on the escapement side of the plane.  As a reminder, the escapement side is on the left if the toe is at the front.  It should be the opposite face from the reference face you marked when you milled up the plane blank.

Moulding Plane Layout # 3

IMG_2914

I made a mistake when I was laying out the grip on my plane.  I marked 1 1/2″ down on the blind side of the plane.  I guess I’ll have to live with a cutting gauge mark along the blind side of my plane.  If you do mess it up, it won’t hurt anything.

Once this is done, it’s time to lay out the back of the mouth of the plane.  This will be located 3 3/4″ from the front end (the toe) of the plane.  Measure back from 3 3/4″ layout line that will be the finished toe of the plane and mark a line at a right angle down the sole of the plane to indicate the back of the mouth.  The mouth will be 3/8″ from the escapement side of the plane.

Moulding Plane Layout # 4

IMG_2915

When the back of the mouth is laid out, we can mark the line that will be the bed of the plane.  I have a layout block that I use to mark this angle.  The bed angle you want will depend on the type of wood you will be working with the plane.  For softer woods, an angle of 45 degrees (common pitch) is good; for a mix of harder and softer wood, 50 degrees (York pitch); for hard woods 55 degrees (middle pitch); and finally, for figured grain or extremely hard woods, a bed angle of 60 degrees (half pitch) is appropriate.  The higher the angle of the bed, the faster the edge of the plane iron will wear and the more frequently it will have to be sharpened.  The planes I’m making are bedded at the 55 degree (middle) pitch.  When laying out the bed angles, make the initial layout 1/2 degree less than your target angle.  This will give you a little extra material to work with when you are bedding the iron.  My layout block has the right side cut at a 54 1/2 degree angle for the bed (the back side of the blade and wedge mortise).  The left side is cut with a 65 1/2 degree angle for the breast (the front of the mortise.

Moulding Plane Layout # 5

IMG_2919

I line up the right edge with the layout line for the back of the mouth and then use a marking knife to cut in the bed angle.

Next, I use a 1/10″ chisel to mark the front of the mouth of the plane.

Moulding Plane Layout # 6

Sketch-up doesn’t like 1/10″ increments. 3/32″ is a close approximation.

IMG_2917

Using the left side of the layout block, I layout the breast angle the same way I did the bed angle.

Moulding Plane Layout # 7

This angle should be 65 1/2 degrees.

IMG_2921

If we use the point where these two lines end at the top of the plane, we can mark squared lines across the top of the grip.  The space between these two lines will be the front and back of the wedge mortise.

Moulding Plane Layout # 8

IMG_2924

Next, lay out what would be the center of the grip.  This should be around 1/4″ from the blind side of the plane.  If your grip isn’t exactly 1/2″ thick, you’ll want to make sure you mark the true center of the the grip. You’ll be using this line to layout the width of the wedge mortise.

Moulding Plane Layout # 9

IMG_2925

The thickness of the wedges of moulding planes varies based on the size of the cutting profile of the plane.  For a # 6 plane, the wedge thickness is 3/16″.  We need to layout the walls of the mortise 3/32″ from each side of the center line.  Check before the final layout lines are marked to make sure you are at 3/16″ total thickness.

Moulding Plane Layout # 10

You should run the layout line for the blindside of the mortise down the length of the grip and the toe and heel of the plane to help with the layout.

Because the wall of the mortise on the blind side is so thin, moulding planes use what is called a leaning wedge.  Basically, this means that the mortise is cut at an angle so that the wall is thicker at the sole of the plane than at the grip.  At the sole of a # 6 plane, the wedge leans at about 1/8″.

Moulding Plane Layout # 11

IMG_2929

When determining the actual amount of lean , you need to know that the back of the mortise, the leaning line you just marked should be exactly the width of the plane profile from the escapement side of the plane.  A # 6 plane cuts a 3/8″ profile (1/6 of a 3/8″ radius circle), so the end of the leaning line has to be exactly 3/8″ from the escapement side of the plane, even if it is less or more than 1/8″.  Mark the lean on both the toe and heel of the plane.

Now we can layout the target profile of the plane.  This plane is a hollow plane (it has a convex curve).  A round plane has a concave profile.  The size of the plane determines the width of the profile and the radius of a circle that it cuts.  These planes cut a 1/6 radius of a circle.  Based on the magic of geometry, the width of the plane profile is equal to the radius of the circle the plane cuts.  I laid out the profile of this plane using a plastic circle template, using a 3/4″ diameter circle.IMG_2932As with the lean of the wedge, mark the profile on both the toe and heel of the plane.

Finally, these planes have a clearance angle cut along the blind side of the plane to allow the plane to get into tight spaces.  This angle is 60 degrees off the sole of the plane from the edge of the profile to the blind side of the plane.  For a hollow plane such as this one, the relief angle will run along the sole of the plane 3/8″ from the escapement side of the plane.  For a round plane, the angle starts higher up on the body of  the plane where the curved profile ends.  Mark the relief angles on both the toe and heel and  mark the line where the relief angle meets the blind side of the plane and extend this line down the length of the blind side of the plane.

Moulding Plane Layout # 13

IMG_2933

There you have it – all the major features of the plane are laid out.  There are a lot of steps in laying out a plane, but none of them are difficult or require any extraordinary level of precision.

In the next post, we’ll walk through the process of cutting the escapement and sinking the mortise of the plane.

Until next time. . .

Making a moulding plan: Step 1 – The blank

I’ve started work on making my second molding plane – a # 6 hollow to match the # 6 round plane I’ve been working on for the past couple of months.  As promised, I’ve been taking more photos of the process and want to give a step-by-step overview of the process in case any of my readers want to follow along.

First things first – I’m far from an expert plane maker.  As I mentioned above, this is the second plane I’ve made, but I’ve been happy with the results from my first attempt.  I picked up everything I know about making these planes from Larry Williams’ DVD Making Traditional Side Escapement Planes.  If you are interested in making some of these tools, I cannot recommend the DVD highly enough.  With that out of the way, let’s get started. . .

The first step in making a plane is to select the piece of wood that will be used to make the plane body.  First, what species of wood should you use?  The traditional wood was beech, either European or American.  Other woods that I have heard are good are maple, yellow birch, apple, pear, and cherry.  Basically, you want to use a wood that doesn’t vary much in the density and size of the wood fibers between the early and late growth part of its annual growth rings.  Woods that are consistent between the early and late growth are described as being diffuse porous (as contrasted with woods like oak which have notable differences, which are described as ring porous).  Using diffuse porous woods will help the plane to wear better because the grain is more consistent.  I was fortunate to find several 2″ x 4″ of beech that work great for making these planes, so that’s what I’m using.

Once you’ve chosen your wood species, there is one other thing that you should look for in the blank.  That is, it should be quartersawn.   This simply means that the growth rings should run from one face to the the other across the thickness of the blank.  You can see what I mean in the picture below the paragraph after next.

Once you have your stock selected, you need to determine which side and edge will be your reference surfaces.  Using reference surfaces is critical to getting accurate layout, particularly when you are milling lumber by hand.  Basically, you will choose two adjacent surfaces to be your reference surfaces – one face and one edge.  The reference face should be milled up as flat and free of twist as you can make it.  Then, the reference edge should be milled so that it is at a right angle to the reference face and that it is as straight as possible.  Once these two surfaces are prepared, the width and thickness of the blank can be marked based on these surfaces and the other faces milled up to size.  All the layout is then based on the reference surfaces because you can’t assume that the blank is perfectly consistent in thickness or width.  I’ll try to remember to write a post about the process sometime in the near future.

So now that you know what reference surfaces are, how should you choose which surfaces to use as references?  For furniture, it typically doesn’t really matter – you would choose the face that is most visible or that logically has to mate with another piece.  For plane making, however, the choice is largely driven by the blank.  First off, when making moulding planes, you typically want the sole of the plane to be the edge of the blank that was closest to the outside of the tree – the grip edge will be closest to the inside core of the tree.  You want the grip edge to be your reference edge.  Second, based on Larry Williams’ advice in Making Traditional Side Escapement Planes, it is easier to make the plane if the grain runs downhill from the front of the plane (the toe) to the back of the plane (the heel).  See the graphic below.

Moulding Plane Blank

If we look at the plane blank in the image above, the escapement and grip would be cut out of the side facing us.  This is the escapement side.  The other side is called the “blind side” because you can’t see the escapement or the iron from that side.  Since most of the cutting is done on the escapement side, it is more difficult to use as a reference face, so we will use the blind side as the reference.  So, the blind side and grip edge will be our reference surfaces.

Once all this has been worked out, plane the surface that will be the blind side face as flat and free of twist as possible.  Mark that face at the grip edge so you remember which face is your reference.  Then plane the grip edge so that it is square to the blind side and as straight as possible.  With this done, mark the desired thickness of the plane blank all the way around the blank (for a # 6 plane, the target you’re shooting for is 21/32″) and plane down the escapement side to that thickness.  It should be said here that I’m giving instructions for doing this with muscle powered hand tools.  The milling could just as easily be done with a power jointer, planer, tablesaw, and/or bandsaw.

With the blank at target thickness, mark the width of the blank which is 3 1/2″ off of the grip edge (remember, it’s our reference edge).  The finished plane will actually only be 3 3/8″ when we’re all done, but you have an extra 1/8″ on the grip so that the plane can get beat up a little while we’re making it.  Mill the blank to 3 1/2″ in width.  I used my frame saw after starting the kerf with a back-saw.  It could also be done with bandsaw if you’re cutting the blank from a thicker piece.

Once the blank is 3 1/2″ wide by 21/32″ thick, layout the length of the blank at 11″ using only the reference face and reference edges for your square so that the layout lines meet.  Cut the blank to an 11″ length (later, we’ll be cutting the plane down to it’s final length of 10″, but for now we have the extra length to take a little abuse while we’re working.

Now you have a 11″ x 3 1/2″ x 21/32″ blank.  The next phase of making the plane is laying everything out.  More on that in the next blog post.

Until next time. . .